biosimulators_boolnet package¶
- biosimulators_boolnet.exec_sed_doc(doc, working_dir, base_out_path, rel_out_path=None, apply_xml_model_changes=True, log=None, indent=0, pretty_print_modified_xml_models=False, log_level=StandardOutputErrorCapturerLevel.c, config=None)[source]¶
Execute the tasks specified in a SED document and generate the specified outputs
- Parameters
doc (
SedDocument
orstr
) – SED document or a path to SED-ML file which defines a SED documentworking_dir (
str
) – working directory of the SED document (path relative to which models are located)base_out_path (
str
) –path to store the outputs
CSV: directory in which to save outputs to files
{base_out_path}/{rel_out_path}/{report.id}.csv
HDF5: directory in which to save a single HDF5 file (
{base_out_path}/reports.h5
), with reports at keys{rel_out_path}/{report.id}
within the HDF5 file
rel_out_path (
str
, optional) – path relative tobase_out_path
to store the outputsapply_xml_model_changes (
bool
, optional) – ifTrue
, apply any model changes specified in the SED-ML file before callingtask_executer
.log (
SedDocumentLog
, optional) – log of the documentindent (
int
, optional) – degree to indent status messagespretty_print_modified_xml_models (
bool
, optional) – ifTrue
, pretty print modified XML modelslog_level (
StandardOutputErrorCapturerLevel
, optional) – level at which to log outputconfig (
Config
, optional) – BioSimulators common configurationsimulator_config (
SimulatorConfig
, optional) – tellurium configuration
- Returns
ReportResults
: results of each reportSedDocumentLog
: log of the document
- Return type
tuple
- biosimulators_boolnet.exec_sed_task(task, variables, preprocessed_task=None, log=None, config=None)[source]¶
Execute a task and save its results
- Parameters
task (
Task
) – taskvariables (
list
ofVariable
) – variables that should be recordedpreprocessed_task (
dict
, optional) – preprocessed information about the task, including possible model changes and variables. This can be used to avoid repeatedly executing the same initialization for repeated calls to this method.log (
TaskLog
, optional) – log for the taskconfig (
Config
, optional) – BioSimulators common configuration
- Returns
VariableResults
: results of variablesTaskLog
: log- Return type
tuple
- Raises
NotImplementedError –
Task requires a time course that BoolNet doesn’t support * Task requires an algorithm that BoolNet doesn’t support
- biosimulators_boolnet.exec_sedml_docs_in_combine_archive(archive_filename, out_dir, config=None)[source]¶
Execute the SED tasks defined in a COMBINE/OMEX archive and save the outputs
- Parameters
archive_filename (
str
) – path to COMBINE/OMEX archiveout_dir (
str
) –path to store the outputs of the archive
CSV: directory in which to save outputs to files
{ out_dir }/{ relative-path-to-SED-ML-file-within-archive }/{ report.id }.csv
HDF5: directory in which to save a single HDF5 file (
{ out_dir }/reports.h5
), with reports at keys{ relative-path-to-SED-ML-file-within-archive }/{ report.id }
within the HDF5 file
config (
Config
, optional) – BioSimulators common configuration
- Returns
SedDocumentResults
: resultsCombineArchiveLog
: log
- Return type
tuple
- biosimulators_boolnet.get_simulator_version()[source]¶
Get the version of BoolNet
- Returns
version
- Return type
str
- biosimulators_boolnet.preprocess_sed_task(task, variables, config=None)[source]¶
Preprocess a SED task, including its possible model changes and variables. This is useful for avoiding repeatedly initializing tasks on repeated calls of
exec_sed_task
.- Parameters
task (
Task
) – taskvariables (
list
ofVariable
) – variables that should be recordedconfig (
Config
, optional) – BioSimulators common configuration
- Returns
preprocessed information about the task
- Return type
dict
Submodules¶
biosimulators_boolnet.config module¶
Configuration for BioSimulators-BoolNet
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-08
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
biosimulators_boolnet.core module¶
BioSimulators-compliant command-line interface to the BoolNet simulation program.
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-05
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
- biosimulators_boolnet.core.exec_sed_doc(doc, working_dir, base_out_path, rel_out_path=None, apply_xml_model_changes=True, log=None, indent=0, pretty_print_modified_xml_models=False, log_level=StandardOutputErrorCapturerLevel.c, config=None)[source]¶
Execute the tasks specified in a SED document and generate the specified outputs
- Parameters
doc (
SedDocument
orstr
) – SED document or a path to SED-ML file which defines a SED documentworking_dir (
str
) – working directory of the SED document (path relative to which models are located)base_out_path (
str
) –path to store the outputs
CSV: directory in which to save outputs to files
{base_out_path}/{rel_out_path}/{report.id}.csv
HDF5: directory in which to save a single HDF5 file (
{base_out_path}/reports.h5
), with reports at keys{rel_out_path}/{report.id}
within the HDF5 file
rel_out_path (
str
, optional) – path relative tobase_out_path
to store the outputsapply_xml_model_changes (
bool
, optional) – ifTrue
, apply any model changes specified in the SED-ML file before callingtask_executer
.log (
SedDocumentLog
, optional) – log of the documentindent (
int
, optional) – degree to indent status messagespretty_print_modified_xml_models (
bool
, optional) – ifTrue
, pretty print modified XML modelslog_level (
StandardOutputErrorCapturerLevel
, optional) – level at which to log outputconfig (
Config
, optional) – BioSimulators common configurationsimulator_config (
SimulatorConfig
, optional) – tellurium configuration
- Returns
ReportResults
: results of each reportSedDocumentLog
: log of the document
- Return type
tuple
- biosimulators_boolnet.core.exec_sed_task(task, variables, preprocessed_task=None, log=None, config=None)[source]¶
Execute a task and save its results
- Parameters
task (
Task
) – taskvariables (
list
ofVariable
) – variables that should be recordedpreprocessed_task (
dict
, optional) – preprocessed information about the task, including possible model changes and variables. This can be used to avoid repeatedly executing the same initialization for repeated calls to this method.log (
TaskLog
, optional) – log for the taskconfig (
Config
, optional) – BioSimulators common configuration
- Returns
VariableResults
: results of variablesTaskLog
: log- Return type
tuple
- Raises
NotImplementedError –
Task requires a time course that BoolNet doesn’t support * Task requires an algorithm that BoolNet doesn’t support
- biosimulators_boolnet.core.exec_sedml_docs_in_combine_archive(archive_filename, out_dir, config=None)[source]¶
Execute the SED tasks defined in a COMBINE/OMEX archive and save the outputs
- Parameters
archive_filename (
str
) – path to COMBINE/OMEX archiveout_dir (
str
) –path to store the outputs of the archive
CSV: directory in which to save outputs to files
{ out_dir }/{ relative-path-to-SED-ML-file-within-archive }/{ report.id }.csv
HDF5: directory in which to save a single HDF5 file (
{ out_dir }/reports.h5
), with reports at keys{ relative-path-to-SED-ML-file-within-archive }/{ report.id }
within the HDF5 file
config (
Config
, optional) – BioSimulators common configuration
- Returns
SedDocumentResults
: resultsCombineArchiveLog
: log
- Return type
tuple
- biosimulators_boolnet.core.preprocess_sed_task(task, variables, config=None)[source]¶
Preprocess a SED task, including its possible model changes and variables. This is useful for avoiding repeatedly initializing tasks on repeated calls of
exec_sed_task
.- Parameters
task (
Task
) – taskvariables (
list
ofVariable
) – variables that should be recordedconfig (
Config
, optional) – BioSimulators common configuration
- Returns
preprocessed information about the task
- Return type
dict
biosimulators_boolnet.data_model module¶
Data structures for representing the mapping from KISAO terms to BoolNet methods and their arguments
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-08
- Copyright
2021, Center for Reproducible Biomedical Modeling
- License
MIT
- biosimulators_boolnet.data_model.transform_gene_probabilities(dict_value, model)[source]¶
Validate a dictionary that maps the id of each species to its probability to be chosen for the next state transition, and transform the dictonary into a vector.
- Parameters
dict_value (
dict
ofstr
tofloat
) – dictionary that maps the id of each species to its probability to be chosen for the next state transitionmodel (
ListVector
) – model
- Returns
species state transition probabilities
- Return type
FloatVector
- Raises
ValueError – if the value is dictionary of the transition probability of each species
biosimulators_boolnet.utils module¶
Utilities for working with BoolNet
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-08
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
- biosimulators_boolnet.utils.get_boolnet()[source]¶
Get the BoolNet R package
- Returns
BoolNet R package
- Return type
InstalledSTPackage
- biosimulators_boolnet.utils.get_variable_results(simulation, variables, target_x_paths_keys, species_results)[source]¶
Get the predicted values of the desired variables
- Parameters
simulation (
UniformTimeCourseSimulation
) – simulationvariables (
list
ofVariable
) – variables of data generatorstarget_x_paths_keys (
dict
) – dictionary that maps each variable target to the BoolNet key of the corresponding qualitative speciesspecies_results (
dict
ofstr
tonumpy.ndarray
) – dictionary that maps the id of each species to its predicted values
- Returns
VariableResults
- biosimulators_boolnet.utils.get_variable_target_x_path_keys(variables, model_etree)[source]¶
Get the BoolNet key for each XML XPath target of a SED-ML variable
- Parameters
variables (
list
ofVariable
) – variables of data generatorsmodel_etree (
lxml.etree._ElementTree
) – element tree for model
- Returns
- dictionary that maps each variable target to the BoolNet key
of the corresponding qualitative species
- Return type
dict
- biosimulators_boolnet.utils.install_boolnet()[source]¶
Install the BoolNet R package if its not already installed
- Raises
RuntimeError – if BoolNet could not be installed
- biosimulators_boolnet.utils.set_simulation_method_arg(model, algorithm_kisao_id, parameter_change, simulation_method_args)[source]¶
Set the value of an argument of BoolNet’s
generateTimeSeries
method based on a SED parameter object (represented by an instance ofAlgorithmParameterChange
).- Parameters
model (
ListVector
) – modelalgorithm_kisao_id (
str
) – KiSAO id of the algorithmparameter_change (
AlgorithmParameterChange
) – desired value of a parameter of the algorithmsim_method_args (
dict
) – arguments for BoolNet’sgenerateTimeSeries
method
- biosimulators_boolnet.utils.validate_data_generator_variables(variables, algorithm_kisao_id)[source]¶
Validate that BoolNet can produce the desired variables of the desired data generators
- Parameters
variables (
list
ofVariable
) – variables of data generatorsalgorithm_kisao_id (
str
) – KiSAO id of the algorithm
- Raises
NotImplementedError – a variable requires an unsupported symbol
ValueError – a variable requires an unsupported type of target