biosimulators_boolnet package¶
- biosimulators_boolnet.exec_sed_doc(doc, working_dir, base_out_path, rel_out_path=None, apply_xml_model_changes=True, log=None, indent=0, pretty_print_modified_xml_models=False, log_level=StandardOutputErrorCapturerLevel.c, config=None)[source]¶
- Execute the tasks specified in a SED document and generate the specified outputs - Parameters
- doc ( - SedDocumentor- str) – SED document or a path to SED-ML file which defines a SED document
- working_dir ( - str) – working directory of the SED document (path relative to which models are located)
- base_out_path ( - str) –- path to store the outputs - CSV: directory in which to save outputs to files - {base_out_path}/{rel_out_path}/{report.id}.csv
- HDF5: directory in which to save a single HDF5 file ( - {base_out_path}/reports.h5), with reports at keys- {rel_out_path}/{report.id}within the HDF5 file
 
- rel_out_path ( - str, optional) – path relative to- base_out_pathto store the outputs
- apply_xml_model_changes ( - bool, optional) – if- True, apply any model changes specified in the SED-ML file before calling- task_executer.
- log ( - SedDocumentLog, optional) – log of the document
- indent ( - int, optional) – degree to indent status messages
- pretty_print_modified_xml_models ( - bool, optional) – if- True, pretty print modified XML models
- log_level ( - StandardOutputErrorCapturerLevel, optional) – level at which to log output
- config ( - Config, optional) – BioSimulators common configuration
- simulator_config ( - SimulatorConfig, optional) – tellurium configuration
 
- Returns
- ReportResults: results of each report
- SedDocumentLog: log of the document
 
- Return type
- tuple
 
- biosimulators_boolnet.exec_sed_task(task, variables, preprocessed_task=None, log=None, config=None)[source]¶
- Execute a task and save its results - Parameters
- task ( - Task) – task
- variables ( - listof- Variable) – variables that should be recorded
- preprocessed_task ( - dict, optional) – preprocessed information about the task, including possible model changes and variables. This can be used to avoid repeatedly executing the same initialization for repeated calls to this method.
- log ( - TaskLog, optional) – log for the task
- config ( - Config, optional) – BioSimulators common configuration
 
- Returns
- VariableResults: results of variables- TaskLog: log
- Return type
- tuple
- Raises
- NotImplementedError – - Task requires a time course that BoolNet doesn’t support * Task requires an algorithm that BoolNet doesn’t support 
 
 
- biosimulators_boolnet.exec_sedml_docs_in_combine_archive(archive_filename, out_dir, config=None)[source]¶
- Execute the SED tasks defined in a COMBINE/OMEX archive and save the outputs - Parameters
- archive_filename ( - str) – path to COMBINE/OMEX archive
- out_dir ( - str) –- path to store the outputs of the archive - CSV: directory in which to save outputs to files - { out_dir }/{ relative-path-to-SED-ML-file-within-archive }/{ report.id }.csv
- HDF5: directory in which to save a single HDF5 file ( - { out_dir }/reports.h5), with reports at keys- { relative-path-to-SED-ML-file-within-archive }/{ report.id }within the HDF5 file
 
- config ( - Config, optional) – BioSimulators common configuration
 
- Returns
- SedDocumentResults: results
- CombineArchiveLog: log
 
- Return type
- tuple
 
- biosimulators_boolnet.get_simulator_version()[source]¶
- Get the version of BoolNet - Returns
- version 
- Return type
- str
 
- biosimulators_boolnet.preprocess_sed_task(task, variables, config=None)[source]¶
- Preprocess a SED task, including its possible model changes and variables. This is useful for avoiding repeatedly initializing tasks on repeated calls of - exec_sed_task.- Parameters
- task ( - Task) – task
- variables ( - listof- Variable) – variables that should be recorded
- config ( - Config, optional) – BioSimulators common configuration
 
- Returns
- preprocessed information about the task 
- Return type
- dict
 
Submodules¶
biosimulators_boolnet.config module¶
Configuration for BioSimulators-BoolNet
- Author
- Jonathan Karr <karr@mssm.edu> 
- Date
- 2021-01-08 
- Copyright
- 2020-2021, Center for Reproducible Biomedical Modeling 
- License
- MIT 
biosimulators_boolnet.core module¶
BioSimulators-compliant command-line interface to the BoolNet simulation program.
- Author
- Jonathan Karr <karr@mssm.edu> 
- Date
- 2021-01-05 
- Copyright
- 2020-2021, Center for Reproducible Biomedical Modeling 
- License
- MIT 
- biosimulators_boolnet.core.exec_sed_doc(doc, working_dir, base_out_path, rel_out_path=None, apply_xml_model_changes=True, log=None, indent=0, pretty_print_modified_xml_models=False, log_level=StandardOutputErrorCapturerLevel.c, config=None)[source]¶
- Execute the tasks specified in a SED document and generate the specified outputs - Parameters
- doc ( - SedDocumentor- str) – SED document or a path to SED-ML file which defines a SED document
- working_dir ( - str) – working directory of the SED document (path relative to which models are located)
- base_out_path ( - str) –- path to store the outputs - CSV: directory in which to save outputs to files - {base_out_path}/{rel_out_path}/{report.id}.csv
- HDF5: directory in which to save a single HDF5 file ( - {base_out_path}/reports.h5), with reports at keys- {rel_out_path}/{report.id}within the HDF5 file
 
- rel_out_path ( - str, optional) – path relative to- base_out_pathto store the outputs
- apply_xml_model_changes ( - bool, optional) – if- True, apply any model changes specified in the SED-ML file before calling- task_executer.
- log ( - SedDocumentLog, optional) – log of the document
- indent ( - int, optional) – degree to indent status messages
- pretty_print_modified_xml_models ( - bool, optional) – if- True, pretty print modified XML models
- log_level ( - StandardOutputErrorCapturerLevel, optional) – level at which to log output
- config ( - Config, optional) – BioSimulators common configuration
- simulator_config ( - SimulatorConfig, optional) – tellurium configuration
 
- Returns
- ReportResults: results of each report
- SedDocumentLog: log of the document
 
- Return type
- tuple
 
- biosimulators_boolnet.core.exec_sed_task(task, variables, preprocessed_task=None, log=None, config=None)[source]¶
- Execute a task and save its results - Parameters
- task ( - Task) – task
- variables ( - listof- Variable) – variables that should be recorded
- preprocessed_task ( - dict, optional) – preprocessed information about the task, including possible model changes and variables. This can be used to avoid repeatedly executing the same initialization for repeated calls to this method.
- log ( - TaskLog, optional) – log for the task
- config ( - Config, optional) – BioSimulators common configuration
 
- Returns
- VariableResults: results of variables- TaskLog: log
- Return type
- tuple
- Raises
- NotImplementedError – - Task requires a time course that BoolNet doesn’t support * Task requires an algorithm that BoolNet doesn’t support 
 
 
- biosimulators_boolnet.core.exec_sedml_docs_in_combine_archive(archive_filename, out_dir, config=None)[source]¶
- Execute the SED tasks defined in a COMBINE/OMEX archive and save the outputs - Parameters
- archive_filename ( - str) – path to COMBINE/OMEX archive
- out_dir ( - str) –- path to store the outputs of the archive - CSV: directory in which to save outputs to files - { out_dir }/{ relative-path-to-SED-ML-file-within-archive }/{ report.id }.csv
- HDF5: directory in which to save a single HDF5 file ( - { out_dir }/reports.h5), with reports at keys- { relative-path-to-SED-ML-file-within-archive }/{ report.id }within the HDF5 file
 
- config ( - Config, optional) – BioSimulators common configuration
 
- Returns
- SedDocumentResults: results
- CombineArchiveLog: log
 
- Return type
- tuple
 
- biosimulators_boolnet.core.preprocess_sed_task(task, variables, config=None)[source]¶
- Preprocess a SED task, including its possible model changes and variables. This is useful for avoiding repeatedly initializing tasks on repeated calls of - exec_sed_task.- Parameters
- task ( - Task) – task
- variables ( - listof- Variable) – variables that should be recorded
- config ( - Config, optional) – BioSimulators common configuration
 
- Returns
- preprocessed information about the task 
- Return type
- dict
 
biosimulators_boolnet.data_model module¶
Data structures for representing the mapping from KISAO terms to BoolNet methods and their arguments
- Author
- Jonathan Karr <karr@mssm.edu> 
- Date
- 2021-01-08 
- Copyright
- 2021, Center for Reproducible Biomedical Modeling 
- License
- MIT 
- biosimulators_boolnet.data_model.transform_gene_probabilities(dict_value, model)[source]¶
- Validate a dictionary that maps the id of each species to its probability to be chosen for the next state transition, and transform the dictonary into a vector. - Parameters
- dict_value ( - dictof- strto- float) – dictionary that maps the id of each species to its probability to be chosen for the next state transition
- model ( - ListVector) – model
 
- Returns
- species state transition probabilities 
- Return type
- FloatVector
- Raises
- ValueError – if the value is dictionary of the transition probability of each species 
 
biosimulators_boolnet.utils module¶
Utilities for working with BoolNet
- Author
- Jonathan Karr <karr@mssm.edu> 
- Date
- 2021-01-08 
- Copyright
- 2020-2021, Center for Reproducible Biomedical Modeling 
- License
- MIT 
- biosimulators_boolnet.utils.get_boolnet()[source]¶
- Get the BoolNet R package - Returns
- BoolNet R package 
- Return type
- InstalledSTPackage
 
- biosimulators_boolnet.utils.get_variable_results(simulation, variables, target_x_paths_keys, species_results)[source]¶
- Get the predicted values of the desired variables - Parameters
- simulation ( - UniformTimeCourseSimulation) – simulation
- variables ( - listof- Variable) – variables of data generators
- target_x_paths_keys ( - dict) – dictionary that maps each variable target to the BoolNet key of the corresponding qualitative species
- species_results ( - dictof- strto- numpy.ndarray) – dictionary that maps the id of each species to its predicted values
 
- Returns
- VariableResults
 
- biosimulators_boolnet.utils.get_variable_target_x_path_keys(variables, model_etree)[source]¶
- Get the BoolNet key for each XML XPath target of a SED-ML variable - Parameters
- variables ( - listof- Variable) – variables of data generators
- model_etree ( - lxml.etree._ElementTree) – element tree for model
 
- Returns
- dictionary that maps each variable target to the BoolNet key
- of the corresponding qualitative species 
 
- Return type
- dict
 
- biosimulators_boolnet.utils.install_boolnet()[source]¶
- Install the BoolNet R package if its not already installed - Raises
- RuntimeError – if BoolNet could not be installed 
 
- biosimulators_boolnet.utils.set_simulation_method_arg(model, algorithm_kisao_id, parameter_change, simulation_method_args)[source]¶
- Set the value of an argument of BoolNet’s - generateTimeSeriesmethod based on a SED parameter object (represented by an instance of- AlgorithmParameterChange).- Parameters
- model ( - ListVector) – model
- algorithm_kisao_id ( - str) – KiSAO id of the algorithm
- parameter_change ( - AlgorithmParameterChange) – desired value of a parameter of the algorithm
- sim_method_args ( - dict) – arguments for BoolNet’s- generateTimeSeriesmethod
 
 
- biosimulators_boolnet.utils.validate_data_generator_variables(variables, algorithm_kisao_id)[source]¶
- Validate that BoolNet can produce the desired variables of the desired data generators - Parameters
- variables ( - listof- Variable) – variables of data generators
- algorithm_kisao_id ( - str) – KiSAO id of the algorithm
 
- Raises
- NotImplementedError – a variable requires an unsupported symbol 
- ValueError – a variable requires an unsupported type of target