biosimulators_bionetgen package¶
- biosimulators_bionetgen.get_simulator_version()[source]¶
Get the version of BioNetGen
- Returns
version
- Return type
str
Submodules¶
biosimulators_bionetgen.config module¶
Configuration for BioSimulators-BioNetGen
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-05
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
biosimulators_bionetgen.core module¶
BioSimulators-compliant command-line interface to the BioNetGen simulation program.
- Author
Jonathan Karr <karr@mssm.edu>
- Author
Ali Sinan Saglam <als251@pitt.edu>
- Date
2021-01-05
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
- biosimulators_bionetgen.core.exec_sed_doc(doc, working_dir, base_out_path, rel_out_path=None, apply_xml_model_changes=False, log=None, indent=0, pretty_print_modified_xml_models=False, log_level=StandardOutputErrorCapturerLevel.c, config=None)[source]¶
Execute the tasks specified in a SED document and generate the specified outputs
- Parameters
doc (
SedDocument
orstr
) – SED document or a path to SED-ML file which defines a SED documentworking_dir (
str
) – working directory of the SED document (path relative to which models are located)base_out_path (
str
) –path to store the outputs
CSV: directory in which to save outputs to files
{base_out_path}/{rel_out_path}/{report.id}.csv
HDF5: directory in which to save a single HDF5 file (
{base_out_path}/reports.h5
), with reports at keys{rel_out_path}/{report.id}
within the HDF5 file
rel_out_path (
str
, optional) – path relative tobase_out_path
to store the outputsapply_xml_model_changes (
bool
, optional) – ifTrue
, apply any model changes specified in the SED-ML file before callingtask_executer
.log (
SedDocumentLog
, optional) – log of the documentindent (
int
, optional) – degree to indent status messagespretty_print_modified_xml_models (
bool
, optional) – ifTrue
, pretty print modified XML modelslog_level (
StandardOutputErrorCapturerLevel
, optional) – level at which to log outputconfig (
Config
, optional) – BioSimulators common configurationsimulator_config (
SimulatorConfig
, optional) – tellurium configuration
- Returns
ReportResults
: results of each reportSedDocumentLog
: log of the document
- Return type
tuple
- biosimulators_bionetgen.core.exec_sed_task(task, variables, preprocessed_task=None, log=None, config=None)[source]¶
Execute a task and save its results
- Parameters
task (
Task
) – SED taskvariables (
list
ofVariable
) – variables that should be recordedpreprocessed_task (
dict
, optional) – preprocessed information about the task, including possible model changes and variables. This can be used to avoid repeatedly executing the same initialization for repeated calls to this method.log (
TaskLog
, optional) – log for the taskconfig (
Config
, optional) – BioSimulators common configuration
- Returns
VariableResults
: results of variablesTaskLog
: log- Return type
tuple
- biosimulators_bionetgen.core.exec_sedml_docs_in_combine_archive(archive_filename, out_dir, config=None)[source]¶
Execute the SED tasks defined in a COMBINE/OMEX archive and save the outputs
- Parameters
archive_filename (
str
) – path to COMBINE/OMEX archiveout_dir (
str
) –path to store the outputs of the archive
CSV: directory in which to save outputs to files
{ out_dir }/{ relative-path-to-SED-ML-file-within-archive }/{ report.id }.csv
HDF5: directory in which to save a single HDF5 file (
{ out_dir }/reports.h5
), with reports at keys{ relative-path-to-SED-ML-file-within-archive }/{ report.id }
within the HDF5 file
config (
Config
, optional) – BioSimulators common configuration
- Returns
SedDocumentResults
: resultsCombineArchiveLog
: log
- Return type
tuple
- biosimulators_bionetgen.core.preprocess_sed_task(task, variables, config=None)[source]¶
Preprocess a SED task, including its possible model changes and variables. This is useful for avoiding repeatedly initializing tasks on repeated calls of
exec_sed_task
.- Parameters
task (
Task
) – taskvariables (
list
ofVariable
) – variables that should be recordedconfig (
Config
, optional) – BioSimulators common configuration
- Returns
preprocessed information about the task
- Return type
dict
biosimulators_bionetgen.data_model module¶
Data structures for representing BNGL models
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-05
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
- class biosimulators_bionetgen.data_model.Model[source]¶
Bases:
collections.OrderedDict
A BNGL model: a collection of model blocks
- class biosimulators_bionetgen.data_model.ModelBlock(iterable=(), /)[source]¶
Bases:
list
A “block” or section of a model such as parameters or ‘molecule types’
- is_equal(other)[source]¶
Determine whether two model blocks are semantically equivalent
- Parameters
other (
ModelBlock
) – second model block- Returns
whether the model blocks are semantically equivalent
- Return type
bool
- class biosimulators_bionetgen.data_model.Task(model=None, actions=None)[source]¶
Bases:
object
A BNGL task
- Attributes
model (
Model
): model actions (list
ofstr
): actions such as simulations
- is_equal(other)[source]¶
Determine whether two model blocks are semantically equivalent
- Parameters
other (
ModelBlock
) – second model block- Returns
whether the model blocks are semantically equivalent
- Return type
bool
biosimulators_bionetgen.io module¶
Methods for reading BNGL models
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-05
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
- biosimulators_bionetgen.io.read_simulation_results(filename)[source]¶
Read the predicted time courses of the observables of a simulation
- Parameters
filename (
str
) – path to simulation results in BioNetGen’s gdat format- Returns
predicted time courses of the observables
- Return type
pandas.DataFrame
biosimulators_bionetgen.utils module¶
Utilities for working with BioNetGen
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-05
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
- biosimulators_bionetgen.utils.add_model_attribute_change_to_task(task, change, preprocessed_change=None)[source]¶
Encode SED model attribute changes into a BioNetGen task
Compartment sizes: targets should follow the pattern
compartments.<compartment_id>.size
Function expressions: targets should follow the pattern
functions.<function_id>.expression
Initial species counts: targets should follow the pattern
species.<species_id>.count
Parameter values: targets should follow the pattern
parameters.<parameter_id>.value
- Parameters
task (
Task
) – BioNetGen taskchange (
ModelAttributeChange
) – model attribute changepreprocessed_change (
dict
) – preprocessed information about the change
- Raises
ValueError – if a target of a change is not valid
- biosimulators_bionetgen.utils.add_variables_to_model(model, variables)[source]¶
Encode SED variables into observables in a BioNetGen task
- Parameters
model (
Model
) – modelvariables (
list
ofVariable
) – desired variables
- Raises
NotImplementedError – if BioNetGen doesn’t support the symbol or target of a variable
- biosimulators_bionetgen.utils.create_actions_for_simulation(simulation, config=None)[source]¶
Create BioNetGen actions for a SED simulation
- Parameters
simulation (
UniformTimeCourseSimulation
) – SED simulationconfig (
Config
, optional) – configuration
- Raises
NotImplementedError – if BioNetGen doesn’t support the request algorithm or algorithm parameters
- Returns
list
ofstr
: actions for SED simulationstr
: KiSAO id of the algorithm that will be executed
- Return type
tuple
- biosimulators_bionetgen.utils.exec_bionetgen_task(task, verbose=True)[source]¶
Execute a task and return the predicted values of the observables
- Parameters
task (
Task
) – taskverbose (
bool
, optional) – whether to display diagnostic information
- Returns
predicted values of the observables
- Return type
pandas.DataFrame
- Raises
Exception – if the task fails
- biosimulators_bionetgen.utils.get_variables_results_from_observable_results(observable_results, variables)[source]¶
Get the predicted values of the desired variables
- Parameters
observable_results (
pandas.DataFrame
) – predicted values of the observables of a simulationvariables (
list
ofVariable
) – desired variables
- Returns
predicted values of the desired variables
- Return type
VariableResults
- Raises
NotImplementedError – if an unsupported symbol is requested
ValueError – if an undefined target is requested
- biosimulators_bionetgen.utils.preprocess_model_attribute_change(task, change)[source]¶
Process a model change
Compartment sizes: targets should follow the pattern
compartments.<compartment_id>.size
Function expressions: targets should follow the pattern
functions.<function_id>.expression
Initial species counts: targets should follow the pattern
species.<species_id>.count
Parameter values: targets should follow the pattern
parameters.<parameter_id>.value
- Parameters
task (
Task
) – BioNetGen taskchange (
ModelAttributeChange
) – model attribute change
- Returns
processed information about the model change
- Return type
dict
- Raises
ValueError – if a target of a change is not valid
biosimulators_bionetgen.warnings module¶
Warnings
- Author
Jonathan Karr <karr@mssm.edu>
- Date
2021-01-05
- Copyright
2020-2021, Center for Reproducible Biomedical Modeling
- License
MIT
- exception biosimulators_bionetgen.warnings.BioNetGenWarning[source]¶
Bases:
UserWarning
Base class for warnings
- exception biosimulators_bionetgen.warnings.IgnoredBnglFileContentWarning[source]¶
Bases:
biosimulators_bionetgen.warnings.BioNetGenWarning
Warning for content of a BNGL file that is ignored